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TECHNICAL NOTE 3870

MEASUREMENT OF TEE LONGITUDINAL MC14EN’TCE’INERTIA

OF A FTXXIBLX AIRPLANE1

By Henry A. Cole, Jr., and Frances

)SUMMARY

L. Bennfon

The method of measuring moment of inertia of an airplane by oscil-
lating it on lmife edges and a spring is examined smalytically for
application to flexible airplanes. First, the equations of motion of a
flexible airplsne mounted on three supports are presented, Then these
equations are examined for conditions requird to mintiize the difference
between the apparent inertia of the flexible airplane and the inertia of
the rigid airplsme. The smdysis is applied to a flexible airplane
mounted on vsrious cotiinations of springs smd knife edges. A practical
codination is then selected in which the moment-of-inertia correction
for flexibility is very small.

The application and results of the above method in ground oscillation
tests sre described. The various corrections to reduce the measured
moment of inertia to the reference axis moment of inertia me presented.
The results show that measurement of moment of inertia by this method is
practicable, provided the knife edges and
excitation of structural modes.

INTRODUCTION

spring are srranged to minimize

In the evaluation of stability derivatives from dynamic flight-test
data and in the prediction of the dynsmic stability and control of an
airplane, accurate values of the moment d inertia sre important. Esti-
mates of moment of inertia sre usually of doubtful accuracy because of
the large number of psrts in an airplane; hence, it is desirable when-
ever possible, to measure moments of inertia. Although moment of inertia
is a property of rigid bodies, it is used in dynamic stability calcula-
tions for flexible airplmes because inertial effects due to flexibility
are usually insignificant near frequencies of the airplsne oscillatory
modes. For frequencies near the structural males, inertial.effects due
to flexibility have to be taken into account in the analysis.

-—

%3upersedes recently declassified RM A55J21 by Henry A. Cole, Jr.,
and Frances L. Bennionj 1956.
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d

The present investigationwas conducted to obtain reliable measure-
ments of longitudinal moment of inertia of a large flexible swept-wing
airplane for use in conjunction with the dynamic stability and control

w

program which is reported in reference 17 l%e airplane was oscillated
on a support of a spring and two knife edges because this appeared to be
most practical for a large airplane. This ~thod is commonly used for
the determination of moment of inertia of rigid airplanes (ref. 2).
Design of the support equipment becomes more critical for a flexible
airplane because dynsmic coupling of airpla& structural modes with the
support spring system can cause serious errors in the measured frequency
from which the moment of inertia is calculated. Furthermore, the loads
at the three supporting points may be near the maximum allowable; hence,
additional loads due to dynsmic forces may overstress the airplane struc-
ture. In order to overcome these difficulties,the spring-airplane
dynamic systems for a wide rsmge of spring and Imife-edge arrangements

—-

were analyzed, and a combination was select~d which practically eltiinated
the effects of structural flexibility.

The methods used in the dynamical-systems studies and the results
should be of general.interest because they may be applied to other air-
planes in which flexibility is a probkn. The first part of the report
presents methods which can be used to minimize the effects of flexibility.

d

The second part deals with ground oscillation tests of the airplane con-
ducted by personnel of the High-Speed FIQ@t Stati6n of the NAC!Aat k
Edwards Air Force Base, California.

NOTATION

aij

bij

i,j

k

mi

r

x

system influence coefficient, deflection at station i, relative
to horizontal plane, due to load at station j, in./1000 lb —.

——

wing influence coefficient, deflection at station i, relative
to fuselage center line, due to loadat station j, in./1000 lb
(Because of symmetry, stiffness of both wings is included.)

arbitrary station numbers

S~@ comt%,rrt,1000 lb/in. .

equivalent mass at station i, slugs
(Because of symmetry, mass of both whgs is included in wing
stations.)

knife-edge station (station 3 for the test location and station 3’
for the alternate location)

%

longitudinal distance from kni% edge, in. b
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longitudinal distance of station i from knife-edge axis, in.

longitudinal distance of spring from knife-edge axis, in.

vertical distance frcm the horizontal plane through the lmife-edge
axis, in.

vertical displacement of station i relative to ~orizontal plane
through knife-edge axis, in.

vertical force at station i, lb

apparent moment of inertia, slug-ft2

fus~ge moment of inertia, slug-ft2

wing moment of inertia, slug-ft2

longitudinal moment of inertia, slug-ft=

longitudinal moment of inertia about the body reference axis ~ssing
through the airplane center of gravity, slug-ft2

perpendic* ~st=ce from plane passing through ying chord at
wing-fuselage juncture, in.

displacement of station i relative to a plane passing through
wing chord at wing-fuselage juncture, in.

displacement of Wife edges from plane passing through wing chord
at wing-fuselage juncture, h.

a@Le of rotation of fuselage center ltie, radians

frequency, radians/see

undamped natural.frequency of flexible airplane in test rig,
radians/see

wing first-bending mode frequency, radians/see

undamped natural frequency of rigid airplane in test rig,
radians/see

Matrices

{1 column matrix

[1 square matrix

.
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L1

[01

[ 1’

[1]

{}
1

LIJ

row matrix

sq~e matrix with alllexcept

transposed matrix

unit matrix, matrix which has
onal elements and zeros for

diagonal elements eqti to zero

units for all of its principsl diag-
the remainder of its elements

column matrix with all elements eqml to 1

row matrix with all.elements eqW to 1

u

ANALYSIS OF PROBIWM

The basic problem was to devise a method to measure moment of inertia
of a flexible airplane. The moment of inertia of rigid airplanes is d
usually obtained by measuring the frequency of the airplane when osci~ted
on a pair of knife edges and restrained by a spring. When this method is
applied to a flexible airplane, the structural modes can couple with the r

supporting spring reaction forces so that s~ple cs+culations of moment of
inertia from the measured frequency are no longer”valid.‘ Corrections For ‘-
the effect of structural modes on the measured frequency requires knowl-
edge of the structural deflections (modes) and spring constants, or spring
constants and mass distribution of flexible parts; usually these are not
lamwn accurately. A more practical approach is to seek methods in which
flexibility effects on the measured frequency are small. Approximate
equations for the airplane dynamic system supported by knife edges and a
spring will be developed first, and then theapplication of these equa-
tions to the test airplane will be made to determine practical methods
for measuring the moment of inertia.

Airplane-Support Dynamic Equations

The airplane and support system may be-approximately representedby
a system of discrete masses elastically connected as shown in figure 1.
The selection of the distribution and number of masses is discussed in
reference 3. h general, mass points are selected for all relatively
rigid masses on the airplane such as the fu~elage and nacelles. Then the
distributed mass of’the flexible parts is divided into segments, which B

should be-increased in number as more accuracy is desired. The accuracy
of a particular discrete mass arrangement can be checked by comparing the w-.
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deflections of the elastic system
masses and of the continuous mass

5

under inertial loadings of the discrete —
for the mode of interest.

—

I

If the angle 6 is assumed small in the coordinate system of fig-
ure 1, then only the vertical displacements, zi, of the mass points need —

to be considered in the eqyations of motion. The spring characteristics
can be conveniently e~ressed in the form of Wluence coefficients~ aij~
which represent the deflection at station i due to a unit load at
station j. The influence coefficients csn either
measured directly on the airplane-support system.

The deflection at the mass points in terms of
given by:

be calculated or

the applied forces is

. . . . . . . . . . . . . . . . . . . . . . . .

I
ZN = & (aN=F= + aN#2 + aN#a . . . + a~~) I

These equations can be
follows:

more conveniently

{Zi}=aad f’}’

J

written in matrix form as

i,j=l,2, . . .>N (lb)

Matrix notation wild.be used throughout the remainder of the reyort.
These equations can easily be converted to tabular formby applying the
rules of matrix multiplication, addition, ad transposition which are
explained in Chapter 1 of reference k.

Oftentimes, the imfluence coefficients of the airplane wing are known
relative to the fuselage (5 coordinates in fig. 1). If these are
expressed in matrix form [bij] where the element bij is the deflection
at station i, relative to fuselage, due to a load at station j, then
the influence coefficients [aij] for equation (lb) may be obtained by the
following transformation

—

[aid=‘c]M’cJ’+daH4 “’=1>22● ● ●)N ‘2)
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column

[c] = [1] +

12. .. N.. .N

()oo ...1-1

()Oo. ..x%l~

1“”””””””””

loo... (1)l)
L

and r represents the station where the knife
eqution is derived in Appendix A.

For sinusoidalmothn, the inertial force
is Fi =*%2zimi. Then

{}
Zi ‘.ii%2[a4[:’1{24;

The modes and natural frequencies of this

. . . 0

,** o

. . .

. . . 0

edges are located. !l?M.s
—

applied to the structure

>

i)j=l,2). . .)N ‘(3)
r

dynamic system maybe

—.
determined by solving equation-(3) by methods described k reference 4.
Since the fundamental mode is the only one used to determine the moment
of inertia, the simple iteration solution of equation (3) is most prac-
tical. Assume a modal Column,z

{~
zi , substitute into the right-hand side

of ecpation (3), and perform the in icated matrti multiplications. The
resulting modal column is normalized and again substituted into the right-
hand side of eqwtion (3). This process is repeated until successive
normalized modal columns are eqti. The inverse of the normalizing multi-
plier is the frequency sqmred.

The rigid airplane canbe treatedas a special case of eqpation (3)
in which the [bij] part of [aij] is equal to the zero matrix. Then
by equations (2) and (3)

(4a)

2A modal column is a set of coordinates which describes the charac-
teristic shape in which the system oscillates. w
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and, since {}zi is invariant for the rigid case,
to the well-known eqution for a rigid airphe:

from which the moment of inertia is obtained:

N

I Inixi=’ 1000 kxs2~y= —=
144 32 U02

i=l

7

equation (b) reduces

Minimization of Flexibility Effects

(lb)

(kc)

The practical frequencies for ground oscillation tests to determine
moment of inertia naturally fall below the frequencies of the structural
modes. Also, frequencies near zero are not practical because of the
large static spring deflections required and the relatively larger effect
of friction and damping forces. Hence, the highest frequency at which
flexibility effects are small is probably the most desirable. Several
approaches are available. One is to select locations of knife edges and
springs which suppress or uncouple the lowest airplane structural mode,
thus raising the available band of frequencies in which flexibility
effects are smsll. Another approach is.to limit the frequency to values
which keep flexibility effects small. Discussion of these approaches
follows.

Uncoupling of the wing first-bending mode.- When the airplane is
oscillated at frequencies below the structural-mode frequencies, the
imertial forces in the wing excite the wing first-bending mode prharily.
The degree of excitation will, of course, depend on the location of the
rotational axis smd %he frequency. Although it is possible to solve for
an axis which gives the tiimum excitation to the wing, the choice of the
axis is usually restricted to some point near the center of gratity if
static spring deflections are to be kept within practical limits. Since
the axis of rotation is more or less fixed, an external force is needed
to suppress the wing first-bending mode. Such a force is available in
the reaction force at the kntie edges if they are located out on the wing.
The problem then resolves itself into one of selecting a spring location
which gives the reaction force the amplitude and phase necessary to cancel
out the major part of the wing first-bending mode. Since the principal
masses are located in the fuselage, a good criterion to optimize the spring
location is to minimize the deflection of the fuselage relative ‘tothe
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knife edges (51--- This imposes boundary conditions similar to those of
a rigid strut from the wing to the fuselage. The minimum value of 5r

.

can be dete ined by soltig for {zi} over a range of X6, calculating
-

{3
br from Zi and plotting versus Xs . .

Cases where uncoupling is not practical.- In some cases it will.not
be practical to locate knife edges sufficiently far out on the wing to
uncouple the wing first-bending mode. In such cases flexibility effects
can be kept small only by keeping the frequency small. A simplified

.

analysis (Appendix B) of a swept-wing configuration in which the lmife
edges are located near the wing root shows that the apparent inertia is:

--
.

(5)

The moment of inertia of the wing, Iw, is usually about 15 percent of
the total moment of inertia when nacelles aye located near the wing tips.
Then, according to equation (5), errors in moment of inertia greater

—.

than-5 percent-will 6e caused by flexibility if
50 percent of WI.

Analysis of Test Airplane

u. is greate; than .*_-:

r

The dynsmic-analysis techniques just described were applied to a
test airplane which was represented by discrete masses as shown h
figure 2. The airplane dimensions are given in table I snd estimated
masses and influence coefficients are giver”in table 11 obtained from
references 1 and 5. Combinations of spr~ and knife-edge locations as
shown on figure 3 were considered. The most practical.combinations are
those of figures 3(a) and 3(b) because the knife edges are near the
center of gravity which gives small static spring deflections and the-
compression springs reduce the load at the knife edges. The cmnbination
of figure 3(c) was considered because it is an arrangement which is
sometimes used on rigid airplknes and provides an interesting comparison
with the arrangement of figure 3(a) since the reaction forces of the two

——

springs are 1800 out of phase. — ——

Through use of eqmtions (3) end (4b) the frequencies for the flex-
ible and rigid airplane were calculated for the combinations of figure 3.
The results are shown for a range of spring constants on figure 4. The
frequency of the flexible airplane using the combination of figure 3(a)
is nearly the same as the frequency of the rigid airplane but the com-
binations of figures 3(b) and 3(c) show large shifts in frequency due to

Y

flexibility for constsm.t k. Hence, the arrangement shown on figure 3(a)
is the most desirable of the three from the standpoint of reducing flexi- *
bility effects.

.
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The reason for

9

t~e -@rge shifts in frequency is indicated by the

idcorrespondingmodes, zi , plotted in figure 5. This figure shows the
relatiw movement of the fuselage and wing when they oscillate in the
fundamental mode. The modes have been normalized to the ssme angle of
rotation so that the relative amounts of wing deflection are apparent.
It may be seen that system (a) oscilb,tes very nearly as a rigid airplane
in contrast to systems (b) and (c) which have relatively large wing
deflections.

Although the fuselage Jack points are the most practical.locations
for the spring, it is interesting to estimate the optimum location.
Figure 6 shows the variation of the deflection of fuselage relative to
knife edges, brj with spring location, xs. The deflection goes to
zero at xs = O and xs = 680 inches which is at the nose of the airplane
and is noted on figure 2. The former value is trivial because frequency
is zero at this point, but the latter value indicates the approximate
spring location to minimize flexibility effects.

A direct indication of the effects of flexibility on the measured
moment of fiertia is obtained by calculating the sq&re of the ratio of
the flexible to rigid airplane frequencies, (%/%) . This parameter
is inversely proportional to the ratio of the flexible airplane apparent
moment of tiertia sad the rigid airplane moment of inertia. Variation
of this parameter for the two lmdfe-edge locations and a range of spring
locations is shown in figure 7. T&e tiference of the Values frm 1.00
indicates the error in moment of inertia which would result if flexibility
were not taken into account. With knife edges at the tiburd wing jack
points, the optimum location of the spring is at X6 = O, but this loca-
tion is impractical because the frequency is zero. As xs is increased
or decreased, the inertia parameter falls off rapidly. On the other hand,
the inertia parameter for the system with knife edges at outboard wing
jacks shows an initial increase in accuracy with xs and does not fall
off until considerably higher values of xs are reached. It is titer-
esting to note that the optimum value for the outboard wing-jack system
is near the point for ~r = O which supports the use of this criterion
to estimate the optimum.

The degree of coupling of the rigid airplane mode and the wing first-
bendtig mode is indicated by the variation of the inertia parameter,
(%/%)2, as the frequ~cy ~ the rigid aixe approaches the *
first-bending mode frequency of 7.3 radians per second. The two frequen-
cies become equal for the spring location of xs = 830 and a spring con-
stit Of 1.132. As indicated on figure 7, the outboard wing-jack system
incurs sm error of only 3 percent in the inertia parameter, indicating a
small amomt of coupling as ccmpared to 19 percent for the inboard wing-
jack system, indicating a large smount of coupling.

—

.
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MEASUREMENT OF MOMENT OF INERTIA

Test Equipment

The knife-edge and syring combination of figure 3(a) was selected
for use on the test airplane because it satisfied the practical consMera-
tions of small static spring deflections and simplicity of attachments to
jack points and at the same the would only cause an estimated 2.11-percent
change in the inertia due to flexibility. IQxife-edgeand spring instal-
lation details are shown on figures 8 and 9. The spring was calibrated
by applying a bad with a hydrald.icpress and loads were measured with a
strain-gage load instrument. The spring was preloaded to 10,000 pounds
prior to the test to simplify setting up the static spring deflection
(10 in.) forthe test configuration. The airplane-was equi.ppedwith an
optigraph, developed by the NACA, which records the motion of 100-watt
target lights on the wing and fuselage. For this test, target lights were
also mounted on a stand near the tail to give a horizon reference. The
location of target lights used ti this report is indicated in figures 2
and 3(a). A control position recorder was dso instslled to indicate
spring deflections.

Experimental Procedure =d Measurements

The airplane was weighed in the defueled condition on the outboard
wing jacks and the front fuselage jack petit. The airplane was weighed
at the points of support of the spring and knife edges in order to check
the loads on the test equipnent end airplane structure. Gross weight .

was 81,390 pounds with center of gravity located at ~3.6-percentmeu
aerodynamic chord. In this condition it was estimated that the static
spring deflection would be too large so 500 pounds ballast was added to
the tail. Then the total static load on the spring was 11,520 pounds.

The airplane was raised with the outboard wing Jacks, with knife
edges installed, until the rear wheels cleared the floor by 3 tithes.
Then the nose was raisedby the tiboard wing jacks until the spring
shaft could be moved into place under the forward fuselage jack point.
The inboard wing jacks were then lowered and removed so that the airplane
rested only on the knife edges and the spr3ng. The wheels were left down
for safety.

Oscillations were excitedby hand and.the subsequent free osciJh-
txionsof wing and body were measuredly the optigraph. Unfortunately,
the control position recorder malfunctioned, but it was felt that the m
optigraph records were sufficient. ‘l?ypic altimehistories of the opti-
graph measurements are shown on figure lQ1 It is apparent from the wing-
tip records that modes other than the fundamental were excited. Also, it ~

.-
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should be noted that
and on the fringe of
the smdd. deflection
photographic film).

11

the deflections at the wing tip were extremely small
measurhg accuracy of the optigraph as indicated by
of the traces (0.005-in. trace deflection on the
A discussion of these higher modes follows.

Effect of subdominant structural modes.- Several analyses were made
to determine the distortion of the time histories from the fundamental
mode caused by the higher-frequency modes. A dynemic anslysis of the

t modes (ref. 4] was carried out and the results are shown onsubdominant
figure Il. b this figure the modal columns of the first three subdomi-
nant modes are plotted. b every case the deflection of the wing tip is
greater than the deflection at the tail. Hence, since the wing-tip
d@’lections were barely measurable, the distortion of the horizon target
trace (fig. 10) by these higher modes is negligible. This result was
verified by the horizon-target the histories. Components of the cslcu-
lated modes were found to be present but they were too small to sffect
the measured frequency of the fundamental, especially since an average
was taken over a large number of cycles.

Reduction of Data

The average period of the horizon-target deflection osciU.ation was
determined from 24 cycles and estimated accuracy is 3 percent. Measure-
ments and corrections are as follows:

Period = 1.70 *0.05 see

% = 3.70 kO.13 radians/see

k = 1.132 1000 lb/ti.

Xs =391.4 in.

From eqpation (4c), the measured moment of inertia is obtained

Iy = 1,056,0C0 Slug-ftz

Correction for flexibilityy.- The test frequency of 3.7 radian~ per
second very nearly corresponds to the frequency shown in figure k (curve
labeled 3(a) for k = 1.132 and xs = 391.4). For these conditions the
inertial parsmeter determined from figure 7 is 97.6; hence, the correction
for flexibility is 2.4 percent or -25,000 slug-feet squared.

Correction for additional ayparent mass.- Additional apparent mass
was calculated by the method of reference 6 and the correction was found
to~be -20,800 slug-feet sqwed. —
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*

Correction to center of gravity.- The correction for transfer of
moment of inertia from knife edge to center of gravity is -65,5cn)SILlg-

feet squared.
&

Correction for bsllast and pilots.- The,correction to subtract the -.

moment of inertia of the 500 -pound ballast and to add pilots (400 pounds)
to the airplane gave -26,gm S,na +15,200 sl~-feet squared, respectively.

Friction and damping.- The effect of friction and damping on the L.

measured frequency was estimated and found to”be negligible.
—

Wheels.- Although the wheels were down during the tests, calculations
indicated that the difference between moment of inertia with wheels up and
wheels down was negligible.

Sunmary of corrections and moment of inertia.- The measured mcment

—

of inertia and correctionsare summarized below. From these values the
longitudinal moment of inertia about the reference axis is obtained for
the airplane ready to fly except for fuel (81,790 pounds, center of
gravity = 12.k-percent mean aerodynamic chord).

Slug-fta
#

Measured Iy

Flexibility

Additional
apparent mass

C.G. transfer

Ballast

Pilots

1,0%,000 ,

-25,000

-20,800

-65,500

-26,900

+15,200

%ref
933,000

It is interesting to note that the correction for flexibility is
only 2.4 percent as compared to the total correction of 14.5 percent of
measured Iy.

CONCLUSIONS

And@ical and e~rimenta.1 evaluation of ground oscillation tests .

to measure the longitudinal moment of inertia of a large flexible airplane
has led to the conclusion that practicable antaccurate measurements of
the longitudinal moment of inertia of large flexible airplanes can be made

.
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by oscillat~ the airplane on a set of lmife edges and a spring, which
are arranged so as to minimize excitation of structural modes. The
effects of flexibility on the fundamental frequency can be minimized by
reducing the coupling between the spring system mode and the airplane
first-bending mode. This can be done by locating the knife edges out-
board on the wing and selecting a spring location such that the reaction
forces tend to cancel out the wing first-bentig mode. For uses where
it is not practical to locate the lmife edges outboard on the wing,
analyses indicate that the fundamental frequency should he smaJ2 relative
to the lowest structural mode frequency (less than X percent) to avoid
excessive errors in measured moment of inertia.

Ames Aeronautical Laboratory
National.Advisory Ckmmrltteefor Aeronautics

Moffett Field, Calif., Oct. 21, 1955

●
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DERIVATION Cl?AIRYLANE-SUFWRT INFLUENCE COEFFICIENTS

The coordinate system used in this analysis is shown in figure 1.
Assume that the airplane‘influencecoefficients are known for the mass
stations end the knife-edge lo~tion; t~t iS~ [bijI iS ~0~ fi the
equation:

a

.

-Fi}’h]-!”} (Al)

where i = 1,...r,Nandrandr represents the station of the knife edges.

The sum of moments about the reaction point, r, must be equal to
zero. Hence:

Xi
I I-H

Fi + x~k(br - eXs) = O
LA\2

The sum of the vertical forces must be

{}
[lJ Fi + k(br - 8x~)

eqti to zero. Hence:

+R=O

where R is the reaction force at %hekn~e edge.

Combining equations (A3) and (A2) gives:

‘=E-’H3

(A2)
9

—.

(A3)

—.

(A4)

Including the reaction force in eqyation (A4) with the applied
forces.in equation (Al) gives:

*i}= Fij] [[’1 +{~} l%- ‘J 1-F} (M} -s -
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0

{1.where the 1 in the column matrix~ “ , appears in the rth row and
all other elements are zero. k

For small angles, the deflections ~i can be obtained by:

{’i}’+’}--F}’r+‘F]-$} (A6)

By solving for f3 in equation (&) and using equations (A5) and (A6),
ad not@ that br = LO o ● . ~ OJ {hi} where the 1 occurs in the rth
column, it may be shown that:

LA

{}
Zi =

where

[I ‘+~e}ki[c] I+j [c]
{}
Fi

[

()oo. ..1- o.. .o

()oo. ..3& o.. .o
[c] = [1]+

L:::::($+’.”.”*”O

(JL7)

()in which the ~ - 1 terms appear in the rth column.

The influence coefficient matrix of the airplsne supported on knife
edges and springs is:

[a’J]=‘c]FiJl ‘c]’‘* -E}la‘)’=1>2)0● *YN‘A8)
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APPENDIX B

APPARENT INERTIA OF A MASS-SPRING SYSTEM

Consider a mass connected to a pivot point bya spring as shown in
sketch (a). If a sinusoidal forcing moment, M, of frequency u is
applied to the system, what is the apparent inertia?

+M

+8

Sketch (a)

where

are:The eqyations of motion neglecting gravity

mx26+mx~=M

mx~+m~+klG=O

(El)

(B2)

Solving for the steady-state solution of

‘=~(&)

5 gives:
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and since the natural frequency is given by ~12 .k=/m and the true
moment of inertia by I = mx2; then

.

M
IA=n=I [11 (B4)

e
()

1-*2
%1

When a fuselage-wing combination is oscillated at frequencies below
the first-bending mode frequency, the wing-bending curve is very similar
to that of the first-bending mode. Hence, this simple two-degree-of-
freedom analysis is approximately correct for a ccmplete wing for fre-
quencies below the wing first-bending mode. The appsrent inertia of a
rigid fuselage with a flexible wing attached is approximately given by

Iw
IA=IF+

1-
()

%2

q

where

1A app=ent moment of ~ertia

lF fuselage moment Of ~ertia

IN wing moment of inertia .

~= wing first-bending mode frequency

(B5)
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NACA TN 3870

.

TABLE I.- AIRHANE DIMENSIONAL CHARACTERISTICS

Fuselage
Length, ft . . . . . . . . . . . . . . . . . . ..e. .l@04
Average width, ft..... . . . . . . . . . . . . . . 6.95
Average depth, ft..... . . . . . . . . . . . ...7.97

Jing
E@au,ft. . . . . . . . . . . . .“. . . . . . . . . . . ~6
Area, sqft . . . . . . . . . . . . . . . . . . . .0 . 1428
Aspect ratio. . . . . . . . . . . . . . . . . . . . . . 9.43
!kperratio . . . . . . . . . . . . . . . . . . . . . . 0.42
Sweep angle (25-percentM.A.C.), deg . . . . . . . . . . 35
Dihedralangle,deg . . . . . . . . . . . . . . . . . . 0

Horizontaltail
Area, sqft . . . . . . . . . . . . . . . . . . . . . . 268
Aspect ratio. . . . . . . . . . . . . . . . . . . . . . 4.06

.

.
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TARLE II.- AIRHANE MASS AND SPRING
(a) Mass distribution

NACA

CHARACTERISTICS

TN 3870

Station
1 2 3 1 4 5 6 7 8

mf 483.6 259.6 0 0 1=.8 205.8 39.8 716.4 716.I

Percent
wing .383 .383 .400 .lx .707 9795 .924 0 0

Semispan
Percent
wing chord -*39 .38 .58 .58 .38 .14 .38 --- ---

Knife edges at outbosmd wing jack points

‘i 169.3 43.7 0 --- -109.5 -123.3 -211.5 384.9 -247.1

~ife edges at idboard wing jack points

xi 49.4 -76.2 --- 0 4229.4 -243.2 331.4 265.0 -367.0

(b) Wing influence co-f icients

bij

i 2 3 3, 4

I 1 I 0.0637 [0.0175 [0.0214 [0.0075 10.0486

2 .0294 .0360 .0408 .0Q75 .0993

3 .0217 .0442 .0540 --- .1258

3’ .0019 .0082 --- .0032 .0164

4 .0622 I .0993 .1209 ● 0164 .4103
I I I I I

5 .0764 .11o5 .1330 .0180 .4770

6 .0803 .1288 .1603 .0224 .64zL

I I70 0 0 0 10

1810 10 10 10

5

0.0722

.EL30

.1403

.0162

.4820

. w48

● 8218

0

0

6 17

0.0629 0

.1394 0
I

d.1784 0

,0225 0

1.22311 0

0 ]0

o 10

Z_
o

0

0

0

0

0

0

0

0

*

.

.



NACATN 3870 21

t

z .
. ~Knife edge

.

.

Fuselage reference

8
x-

Spring

/1//[1 I //////

1----’, ---i Positive values indicated
by arrows

Figure l.- Coordinate system (side view of airplane and support).

38% wing

Alternate method - knife

edges at inboard wing Test method - knife edges

jack points. Station 3’, at outboard wing jack

Optigraph

lights

~xs=’80~\\Wing-tipoptigraphlightAxis of rotation
\

Figure 2.-

Y
Plan view o< test airplane and discrete masses.
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Horizon optigraph
. target lights —

Optigraph

I
i
1

f Ilil

(a) Khife edges at outboard wing jack points and compression spring at
forward fuselage jack point.

—

-i P-’’”””
/
/\////
k-”+ ““

(b) Khife edges at inboard wing jack points and compression spring at. .
aft fuselage jack point.

n

I \

ffll
‘ ~,w.’”+u

////

(c) I@ife

Figure 3.-

edges at outboard wing jack points and
pivot.

Test airplane supported on knife edges
locations.

tension sprhg

and springs at

aft of

various

.

.

.

.

.
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2.0

—— — – Flexible

1.6 [ t
/ ,

/ i Figure 3(a) /

/

Figure 3(c)
/

“s 1.2
/

\
m

o

8

-.8L /

.4

0 I I I I I

Q I 2 3 4 5 6
w, radians/see

Figure 4.- Effect of wing bending flexibility on the measured frequency
for the various suspension systems in figure 3. (Wing first-bendimg
mcde frequency = 7.3 radians/see.)
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z
/“” T/=”” ,8

38% wing chord

//-
./

*
I r 1

400
x, in.

(a) Knife edges at outboard wing jacks; spring forward.

(b) Khife edges

x, in.

at inboard wing jack5; spring aft.

Iz 0

/“
MM “

/.-
ti~””

I I I I

600 400 200 0 -200 -400
x, in.

(c) Knife edges at outboard wing jacks; spring aft.

“

.

Figure 5.- Fun&.memtal modes for spring-knife-edgearrangements shown
in figure 3 (k = 1.132).



4B NAC!ATN 3870 25

.04

/ y 7

0
\

, in.

-.04 A

-.08

-.12
-400 -200 0 200 400 600 800

xc, in.

Figure 6.- Deflection of fuselage relative to knife-edge sxis for
v~ious spring locations snd l-inch deflection at station 7.
(Knife edges at outbosrd wing jacks.) (k=l.132)

.
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Figure 7.- Effect of spring location on inertia parameter (k = 1.132).
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edge
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I

-+$---1”
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(a) ICaife-edgeinstallation.

2~” Die.

II

A-20240
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Compr
Sp

l“ O.D. “

k=l
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(b) Spring installation.

Figure 8.- Khife-edge and spring details.
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IHgure 1o.- !l!im histories of horizon -get deflection and m-tip
deflection.
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z

Tail
deflection

4.

Wing tip
deflection

1

1 I I I I I

600 400 200 0 -200 -400 -600

x, in.

First subdominant mode (wn= 8.62

z

radians/see ).

L 38% wing chord

reference line

Gpririg Knife edge
1 I i i 1 I I

600 400 200 -400 -600

Second subdominant

o -200
x, in.

mode (un = 16.18

1
z

radians/see).

I

600 400 200 0 -200 -400 -600
x, in.

Third subdominant mode (o. = 23.66 radians/see).

Figure 11.- Calculated subdominant modes for test configuration.

.

NACA - Langley Field, VA.


